Strategic Principles for Exploration Implementation #### Six key strategic principles to provide a sustainable program: - Implementable in the near-term with the buying power of current budgets and in the longer term with budgets commensurate with economic growth. - 2. Application of *high Technology Readiness Level* (TRL) technologies for near term, while focusing research on technologies to address challenges of future missions - 3. Near-term mission opportunities with a defined cadence of compelling missions providing for an incremental buildup of capabilities for more complex missions over time - 4. Opportunities for *US Commercial Business* to further enhance the experience and business base learned from the ISS logistics and crew market - 5. Multi-use, evolvable Space Infrastructure - 6. Significant *International and Commercial participation*, leveraging current International Space Station partnerships ## **EVOLVABLE MARS CAMPAIGN** A Pathways Approach to Exploration **EARTH DEPENDENT** #### PROVING GROUND #### **EARTH INDEPENDENT** #### THE TRADE SPACE **Across the** | Solar Electric Propulsion • In-Situ Resource Utilization (ISRU) • Robotic Precursors • Human/Robotic Interactions • Partnership Coordination • Exploration and Science Activities Trades - **Cis-lunar** | Deep-space testing and autonomous operations - Extensibility to Mars - Mars system staging/refurbishment point and trajectory analyses ### **Mars Vicinity** - Split versus monolithic habitat - Cargo pre-deployment - Mars Phobos/Deimos activities - Entry descent and landing concepts - Transportation technologies/trajectory analyses #### **MARS IS HARD** #### **THERE & BACK** - The ability to launch a very powerful rocket - High-reliability spacecraft systems - Size requirements of crew capsule - Validation of performance of SLS and Orion in the deep space environment (hotter, colder, radiation) - Deep space navigation - Rendezvous and docking - Life support systems - High speed re-entry #### **HAPPY & HEALTHY** - Air, water, food - Waste containment - Psychological impact - Low- / no-gravity - Medical emergencies - Bone loss - Radiation - Ocular degeneration - Hygiene #### **WELL EQUIPPED & PRODUCTIVE** - Sample handling - Microgravity operations - Space suits - Advanced training and tools - Mission planning - Situational awareness and decision making - Crew relationships # **Evolutionary Capabilities** | | EARTH RELIANT Return to Earth; hours | PROVING GROUND Return to Earth: days | EARTH INDEPENDENT Return to Earth: many months | |---------------------------------------|---|---|--| | Transportation | EARTH-BASED SUPPORT: HIGH Low-Earth Orbit | EARTH-BASED SUPPORT: LIMITED Cis-lunar Space | EARTH-BASED SUPPORT: NEGLIGIBLE Mars and Beyond | | Crew Transit | Routine crew rotations via international and industry partners Earth Re-entry: 3,000°F | 2-4 crew launch aboard evolvable
Space Launch System Orion Earth Re-entry: 5,300°F | Up to 6 crew launch aboard Space
Launch System Orion Earth Re-entry: 5,500°F | | Cargo Transit | Routine cargo deliveries to LEO via
industry and international partners | 105t SLS to lunar vicinity | 130t SLS to Mars and beyond Crew must live and work without
resupply from Earth | | Propulsion &
Energy Storage | Large scale use of solar panels | Demonstrate potential resource
utilization techniques Demonstrating high-power,
advanced solar electric propulsion | Potential to expand resource utilization Utilizing large-scale solar electric and other advanced propulsion | | Planetary
rendezvous &
landings | Planetary rendezvous with strong gravity field | Deep Space Rendezvous; gravity free Lunar surface landers | Phobos/Deimos micro-gravity
rendezvous Mars entry, descent, landing on surface | ## Mars 2020 Collaboration Among SMD, HEOMD and STMD Mars 2020 will seek signs of past life on Mars, collect and store a set of soil and rock samples that could be returned to Earth in the future, and test new technology to benefit future robotic and human exploration of Mars. # HEOMD / SMD / STMD are jointly sponsoring investigations to address high priority strategic knowledge gaps and technology development objectives for Human Exploration - Mars Entry, Descent and Landing Instrumentation (MEDLI) to refine atmospheric entry models to inform future landing system design - Exploration technology payloads that make significant progress towards filling at least one major Strategic Knowledge Gap. 46 # Lunar CATALYST Lunar CArgo Transportation And Landing bY Soft Touchdown #### BRINGING THE MOON INTO EARTH'S ECONOMIC SPHERE Accelerating private-sector lunar landing capabilities with NASA expertise using public-private partnerships #### **STATUS** Currently evaluating proposals with partner selections in April and executed agreements in May 2014 # **Evolutionary Capabilities** | | EARTH RELIANT
Return to Earth: hours | PROVING GROUND Return to Earth: days | EARTH INDEPENDENT Return to Earth: many months | |-----------------------------------|---|---|--| | Working In
Space | EARTH-BASED SUPPORT: HIGH Mastering the Fundamentals | EARTH-BASED SUPPORT: LIMITED Pushing the Boundaries | EARTH-BASED SUPPORT: NEGLIGIBLE Exploring Independently | | Exploration and
Science | Microgravity science and human
physiology research | Sampling asteroid for return to
Earth for analysis | Mars moons and surface
exploration and search for life with
in-situ analysis | | Communicating
with Earth | Immediate and continuous support from mission control | Limited delay with minimal crew impact | Independent and self-reliant crew
operates with up to 40 min. delay | | Spacewalk and
Mobility | Zero-g outside spacecraft for
short distances | Zero-g systems for short-distance,
exploration | Surface exploration in partial
gravity with longer distance and
duration | | Spacecraft Assembly & Maintenance | Crew-assisted ISS Assembly Frequent deliveries & servicing | Limited deliveries requires more
efficient systems with common,
interchangeable parts | Maintenance with only the
parts and tools they carry or
produce in-situ | | Human-Robotic
Interactions | Testing safety and control methods
for efficient human-robotic teams | Human- robot teams, with periods
where robots are left alone | Pre-deployed equipment depends on
robots until humans arrive, then human-
robot teams share critical tasks | | In-situ Resource
Utilization | Recycle and reuse water and trash | Learning to recycle destination
resources for fuel, water, oxygen,
and building materials | Crew harvests destination
resources to create fuel, water,
oxygen, and building materials | # **Evolutionary Capabilities** | | EARTH RELIANT
Return to Earth: hours | PROVING GROUND Return to Earth: days | EARTH INDEPENDENT Return to Earth: many months | |------------------------------------|--|--|---| | Staying
Healthy | EARTH-BASED SUPPORT: HIGH Mission Duration: 6-12 months | EARTH-BASED SUPPORT: LIMITED Mission Duration: 1-12 months | EARTH-BASED SUPPORT: NEGLIGIBLE <i>Mission Duration:</i> 2-3 years | | Spacecraft Life
Support Systems | Developing onboard life support
systems for long-duration
missions | Validating onboard recycling and
regenerating life support
systems without resupply | Living and working in spacecraft
that must fully support crew for
years | | Human Health and
Performance | Studying space environment
health risks and testing
solutions | Applying health and performance risk mitigation techniques | Living in space for years while
maintaining crew health and
performance | | Autonomous
Medicine | Developing integrated medical
capability and crew-reliant
medical care | Testing semi-autonomous
integrated medical capability and
crew-reliant medical treatment | Autonomous medical capability
and medical crewmember for
diagnosis and treatment | | Environmental
Monitoring | Testing on-board environmental
monitors with ground validation | Demonstrating onboard
environmental monitoring
systems (no sample return) | Monitoring crew environment for
hazards, eliminating
environmental emergencies | | Advanced Space
Suits | Testing next-generation space suits | Demonstrating advanced space
suits in deep space | Conducting EVAs in
unprecedented planetary
environments | # HUMAN EXPLORATION NASA's Path to Mars ### EARTH RELIANT MISSION: 6 TO 12 MONTHS RETURN TO EARTH: HOURS ## **PROVING GROUND** MISSION: 1 TO 12 MONTHS RETURN TO EARTH: DAYS #### **MARS READY** MISSION: 2 TO 3 YEARS RETURN TO EARTH: MONTHS Mastering fundamentals aboard the International Space Station U.S. companies provide access to low-Earth orbit Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft Developing planetary independence by exploring Mars, its moons and other deep space destinations